Quadratic ideals and Rogers–Ramanujan recursions
نویسندگان
چکیده
منابع مشابه
Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms II
Let D = 1 be a positive non-square integer and let δ = √ D or 1+ √ D 2 be a real quadratic irrational with trace t = δ + δ and norm n = δδ. Let γ = P+δ Q be a quadratic irrational for positive integers P and Q. Given a quadratic irrational γ, there exist a quadratic ideal Iγ = [Q, δ + P ] and an indefinite quadratic form Fγ(x, y) = Q(x−γy)(x−γy) of discriminant Δ = t − 4n. In the first section,...
متن کاملEuclidean Ideals in Quadratic
— We classify all quadratic imaginary number fields that have a Euclidean ideal class. There are seven of them, they are of class number at most two, and in each case the unique class that generates the class-group is moreover norm-Euclidean.
متن کاملOn Indefinite Binary Quadratic Forms and Quadratic Ideals
We consider some properties of indefinite binary quadratic forms F (x, y) = ax +bxy−y of discriminant ∆ = b +4a, and quadratic ideals I = [a, b−√∆ ]. AMS Mathematics Subject Classification (2000): 11E04, 11E12, 11E16
متن کاملinjective modules and prime ideals
محور اصلی این پایان نامه، r- مدولهای a – انژکتیو می باشد که آنها را به عنوان یک تعمیم از مدول های انژکتیو معرفی می کنیم. در ابتدا مدول های انژکتیو را معرفی کرده، سپس برخی نتایج مهم وشناخته شده مدول های انژکتیو را به مدول های a – انژکتیو تعمیم می دهیم. در ادامه رابطه بین مدول های a – انژکتیو و حلقه های نوتری را بررسی می کنیم. پس هدف کلی این پایان نامه این است که با بررسی انژکتیو بودن ایده آله...
15 صفحه اولEuclidean Ideals in Quadratic Imaginary Fields
— We classify all quadratic imaginary number fields that have a Euclidean ideal class. There are seven of them, they are of class number at most two, and in each case the unique class that generates the class-group is moreover norm-Euclidean.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Ramanujan Journal
سال: 2019
ISSN: 1382-4090,1572-9303
DOI: 10.1007/s11139-018-0127-3